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Abstract
We introduce the Slime Mold Graph Repository, a novel data collec-

tion promoting the visibility, accessibility and reuse of experimental data
revolving around network-forming slime molds. By making data instantly
available for researchers across multiple disciplines, the SMGR promotes
novel research as well as the reproduction of original results. While SMGR
data may take various forms, we stress the importance of graph represen-
tations of slime mold networks due to their ease of handling and their
large potential for reuse. Data added to the SMGR stands to gain impact
beyond initial publications or even beyond its domain of origin.

We initiate the SMGR with the comprehensive KIST Europe data set
focused on the slime mold Physarum polycephalum. It contains sequences
of images documenting growth and network formation of the organism
under constant conditions. Suitable image sequences depicting the typical
P. polycephalum network structures are used to compute sequences of
graphs faithfully capturing them. Given such sequences, node identities
are computed, tracking the development of nodes over time. The entire
data set is well-documented, self-contained and ready for inspection via
the SMGR at http://smgr.mpi-inf.mpg.de.

1 Introduction
Slime molds are interesting and complex organisms providing a rich substrate for
interdisciplinary research. One member of the family, Physarum polycephalum,
has received increasing interest as of late resulting in intensive research efforts
that continue to shed light on many aspects of this organism. Of particular
interest is its signature ability to form and maintain complex networks. Efforts
to improve our understanding of formation, structure and function of these
networks are manifold [19, 23, 1, 6, 3] and ongoing.

A popular two-step approach, not restricted to slime molds, consists of taking
images of the networks formed by the organism and converting them to graphs1.

1In this context graphs denote abstract mathematical objects, subject of Graph Theory,
consisting of vertices and edges. Note that some scientific communities traditionally refer to
vertices as nodes or sites and to edges as arcs or links
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First, images are obtained by cultivating P. polycephalum in the wet-lab whilst
documenting the development of the organism and its networks. This is a time
consuming process which needs to be repeated sufficiently often under constant
conditions to acquire a reliable body of observations.

The second part requires dedicated methods capable of analyzing an image
and deriving a faithful graph representation of the network depicted therein.
Such methods have become available recently as convenient software pack-
ages [10]. Once graphs have been established, concepts and methods from Net-
work Science and Graph Theory directly apply, enabling efficient and detailed
investigations of graph properties [4, 14].

Let us stress that both steps are challenging as they require time, special
laboratory resources and expert knowledge. Data acquisition and graph extrac-
tion in particular, may quickly become serious obstacles deterring interested
researchers from starting to work with networks formed by P. polycephalum.

Despite such difficulties, "graph-based" approaches have been quite success-
ful and various interesting results are readily available today [6, 3, 12, 13, 16].
However, the valuable data used to establish these results, i.e. the graphs them-
selves and their underlying images, are not nearly as available and remain over-
looked in many cases. This is most unfortunate because due to their ease of
handling and their abstraction power, graphs naturally lend themselves to reuse,
potentially gaining impact beyond the initial publications they are part of or
even beyond their domain of origin.

Our own experience shows, that most researchers are, at least in principle,
willing to share their valuable data. However, data sharing can be cumbersome
and constitutes an extra hurdle discouraging data reuse. To combat this, data
needs to be collected and made available in an organized fashion. Similar efforts
have become best practice for diverse types of data originating in various fields
of science. Examples are numerous including collections of images of cells [7],
large graphs [18] or experimental data in high energy physics [24], to name but
a few.

To the best of our knowledge no such repository exists for data concerned
with networks of slime molds. For this reason we decided to set up the Slime
Mold Graph Repository with the goal of providing an available collection of
networks focused on slime molds. Although this is clearly a niche topic, we
believe that due to the many open question revolving around the structure and
function of such networks and their large interdisciplinary appeal, setting up a
small but dedicated repository is of pronounced value.

The benefits of such a repository are manifold. Making data available for
everyone increases visibility of contributors, allows original results to be repro-
duced and puts data in a prime position to become a catalyst for novel research.
Given the significant costs, i.e. time and resources, which are typically associ-
ated with obtaining high quality data, promoting increased reuse of data is an
economical choice. Researchers and other professionals that do not have the
required resources/connections to produce/obtain their own data sets benefit
in particular from repositories like the SMGR, since it provides immediate and
convenient access to experimental material that would be hard to acquire by
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other means.
Furthermore, we envision the SMGR to become a mediator between theory

and experiment. Theoretical work in biology and biophysics concerned with
modeling various aspects of P. polycephalum networks, may utilize experimen-
tal data as a testbed for model predictions. This approach has been put into
practice previously [5], but was exclusive to researchers in possession of relevant
data. With the introduction of the SMGR such limitations are removed. Similar
statements can be made for other fields, e.g. Computer Science, which is ac-
tively studying P. polycephalum in the context of Natural Computing. Access to
experimental data via the SMGR allows to compare theory and experiment and
build crucial intuition necessary to drive theoretical investigations and modeling
efforts.

In order for the SMGR to be useful from day one, we initiate the repository
with our own extensive data sets obtained at the KIST Europe. It is important
to us, that anyone can go the SMGR project page, download any available data
and immediately start working with it in whichever way he or she chooses. The
data set we provide also serves as an example illustrating what type of data
the SMGR looks to collect and what level of documentation is appreciated. We
stress at this point that the SMGR is not intended to be a simple archive to
permanently store data. First and foremost, we seek to collect data that has
not yet been fully explored or has a strong potential to be of use to others. The
KIST Europe dataset fulfills both criteria.

In the following we discuss the concept of the SMGR and give a detailed
account of the contents of the KIST Europe data set and how it was obtained.
We also provide suggestions for further use of the contained data.

2 Repository concept
Today the impact of data sharing as a scientific practice is ever increasing.
Currently, two major forms of data collections are commonly encountered.

First, data is collected in large, well-organized repositories holding enormous
amounts of data. Such major repositories easily contain thousands of datasets,
covering numerous topics across its domain of relevance. Due to their size and
complexity, curating and maintaining such repositories requires major resources
typically provided by larger research institutions or non-profit organizations.

Most major data collections, however, have started as small and specialized
repositories at some point. Such repositories constitute the second approach
to data sharing common today. These are typically much simpler in structure
and contain a smaller number of datasets. Small repositories tend to be more
specialized and have very close ties to their relevant research communities since
the operators of the repository are often researchers themselves. Smaller repos-
itories can operate with minimal infrastructure requirements since changes to
the repository are less frequent and data sets are limited in number and size.

With the SMGR we seek to establish a collection of research-grade data
revolving around network-forming slime molds. Given the highly specialized
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nature of the topic, we believe that setting up a small stand-alone repository
is the correct choice to begin with. A small repository is very flexible and can
adapt and evolve more easily based on community feedback. In this form the
idea of the SMGR was first introduced at PhysNet 2015 and was well received
with individuals signaling their willingness to contribute data [11]. We strongly
believe that a tight integration with the research community, is key to the future
success of the SMGR.

Any repository needs a set of instructions, policies and requirements applying
to data submission, data usage and various other general aspects of repository
operation. For these the SMGR relies on established best practices of data
sharing whilst striving to keep things as straight-forward as possible [25]. A
detailed account can be found on the SMGR project page, which we consider
the main part of this contribution. We opt to treat policies, user instructions
and other important questions in a comprehensive FAQ on the SMGR project
page rather than in this manuscript, simply because they are subject to change
in the future.

The SMGR and all available data can be found here: http://smgr.mpi-
inf.mpg.de.

3 The KIST Europe data set
In order to make the SMGR useful from day one, we initiate the repository
with a comprehensive data set revolving around networks formed by P. poly-
cephalum [15]. In the following we present a short description of the KIST
Europe data set designed to give the interested reader a high-level understand-
ing of its nature and content. In addition, we recommend to inspect the data
directly using the browsing and download functions provided on the SMGR
project page. We refer the expert reader, interested in reproducing all the steps
involved in the creation of the data set, to an in-depth exposition covering the
used materials and methods given in the Materials and Methods section.

The KIST Europe data set contains raw and processed data obtained and
derived from 81 identical wet-lab experiments, carefully executed under constant
conditions. Figure 1a illustrates the experimental setup used. The data was
produced using the following procedure:

1. A rectangular plastic dish is prepared with a thin sheet of agar.

2. A small amount of dried P. polycephalum (HU195xHU200) sclerotia crumbs
is lined up along the short edge of the dish, see Figure 1b. The dish is put
into a large light-proof box.

3. After approximately 14 hours the plasmodium has resuscitated and starts
exploring the available space towards the far side of the dish. Typically,
the apical zone needs to cover a distance of several centimeters before
network formation can be observed properly, see Figure 1c.
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4. For the next 30 hours we take a top-view image of the growing plasmodium
and the changing network every 120 seconds from a fixed position. A
typical obtained image is seen in Figure 1d. We stop capturing when the
apical zone is about to reach the far side of the dish, which is outside of
the observed area.

5. After obtaining sequences of images showing the characteristic networks
of P. polycephalum, we use a software called NEFI [10] to compute cor-
responding sequences of graph representations of the depicted structures
within a predefined region of interest, see Figure 1e. The graphs store
precise information of the length and width of the edges as well as the
coordinates of the nodes in the plane. A typical resulting unfiltered graph
is seen in Figure 1f.

6. Given the resulting sequence of graphs we apply filters removing artifacts
and other unwanted features of the graphs. Then we proceed to compute
a novel node tracking which encodes the time development of every node
taking into account the changing topology of the evolving graphs.

Repeating this experiment we obtain 81 similar sequence of images, which
we consider our raw data. We stress at this point that given the inherently
uncontrollable growth process of P. polycephalum, the obtained sequences differ
in length and nature. In some experiments the organism behaved unfavorably,
simply stopping its growth, changing direction or even escaping the container.
While such sequences are part of the raw dataset, we excluded them partially or
completely from the subsequent graph extraction efforts. The removal of such
data reduces the number of series depicting proper network formation to 54.

After obtaining the raw data, we transform the images into equivalent math-
ematical graphs, thus opening up a wealth of possibilities for data analysis. To
this end we deploy a convenient automatic software tool called NEFI [10], which
analyzes a digital image, separates the depicted slime mold network from the
background and returns its graph representation. Using this tool effectively
requires moderate amounts of image preprocessing. In particular, for each se-
quence of images it is necessary to decide on a suitable subsequence to be pro-
cessed. Here we typically exclude parts of the sequence where the apical zone
is still visible. For each such subsequence a suitable region of interest is defined
manually. Figure 1e depicts a typical choice for the region of interest to be pro-
cessed by NEFI. The established unfiltered graph can be seen in Figure 1f. The
graph stores the position of the nodes in the plane as well as edge attributes
such as edge length and widths for each edge. In addition to the output of
NEFI including the unfiltered graphs, the dataset contains NEFI’s input, i.e.
the selected subsequences of images cropped according to their defined regions
of interest.

Note that some parts of the image series showing proper network formation
did not yield optimal representations of the depicted networks. This is a result
of images exhibiting strong color gradients or other effects rendering them too
challenging for automatic network extraction. While such cases may still be
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(a) Schematic description of the ex-
perimental setup.

(b) Crumbs of P. polycephalum scle-
rotia forming the inoculation line.

(c) The plasmodium explores the
dish. The apical zone advances to-
wards the right side of the dish sup-
ported by a complex network that is
continuously forming.

(d) As the apical zone is about to
escape the observation region, the
coarsening of the network becomes
more pronounced.

(e) The apical zone has moved on,
leaving behind a complex network of
veins. The dashed rectangle depicts a
typical region of interest relevant for
subsequent image analysis and graph
detection.

(f) The network within the region of
interest has been extracted by NEFI.
Note that no filters have been applied.
Dead ends and nodes of degree 2 are
visible still, leading to small patches
of nodes appearing to clump up. Such
artifacts can be removed in suitable
post-processing steps.
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handled by tuning the parameters of image processing manually on an image
per image basis, we decided to discard affected series from subsequent process-
ing efforts. As a result the number of usable graph sequences of highest quality
reduced to 36. To this we apply a set of filters removing artifacts, isolated
small components and dead-end paths. Thus we obtain a total of 3134 dis-
tinct filtered graphs faithfully reflecting the topology and edge attributes that
P. polycephalum displayed during the wet-lab experiments. At this point avail-
able graph analysis packages or custom written analysis code can be deployed
to investigate the data in various ways, e.g. [2]. The dataset includes the filtered
graphs as well as all corresponding graph drawings. The latter enable a quick
visual inspection of the graph extraction results.

Given the obtained time-ordered sequences of graphs the development of the
entire graph can be investigated. One may also study what happens to single
nodes as P. polycephalum evolves. Given a graph in a sequence of graphs, let us
pick any node u. Can we determine a set of nodes from graphs in the sequence
that are equivalent to u? In other words, all nodes in the set are earlier or
later versions of u in time? To answer this question we compute a so-called
node tracking which establishes the time development of all nodes in the graph.
Crucially this tracking takes into account topological changes in the evolving
graphs. The result of the tracking is available as node properties of the graphs.
Naturally, the program computing the tracking is include in the dataset. To
the best of our knowledge, this type of data is made available for the first time
through the KIST data set.

Finally, in addition to the actual data, i.e. images and graphs, the KIST Eu-
rope data set contains scripts and larger programs used to process and evaluate
the data. Suitable configuration files specify the used regions of interest and the
parameters used with NEFI. Thus it is possible to repeat the entire data pro-
duction process from the raw images to the obtained filtered graphs including
the tracking of nodes. As part of the SMGR, the KIST Europe data set is well-
structured and self-contained. In particular, sufficient on-the-fly documentation
is available when using the online browsing function of the SMGR.

3.1 Suggested usage of the KIST Europe set
Previously, the data contained in the KIST Europe set has been the subject
of initial analysis by the authors of this manuscript [9]. When exploring time
series of P. polycephalum graphs, a particular focus was placed on edge prop-
erties, the structure of faces, cuts and percolation properties. In the process,
additional questions regarding the nature of P. polycephalum graphs naturally
arose. In particular, one may determine whether there is a similarity between
P. polycephalum networks and Voronoi graphs. The latter are well-studied and
it is interesting to explore a possible connection between their properties and
the features of P. polycephalum. A different suggestion consists of answering
the question whether P. polycephalum graphs are geometric spanners. Spanners
have properties that enable efficient communication between different parts of
the graph, a feature clearly relevant and desirable for an organism such as
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P. polycephalum. Lastly, at the time of writing this manuscript the novel infor-
mation provided by the computed node trackings is yet to be used for the first
time. What can be inferred from the topological changes recorded? Can one
identify patterns with certain structural properties? Can topological properties
be related to questions of biological relevance? Given the large number of graphs
in the SMGR, an investigation of such questions becomes a viable option.

Admittedly, most of the suggestions given so far are inspired by our own
interdisciplinary research interests. However, future investigations are hardly
limited to them alone. It is fair to say that any observable defined on a weighted
graph can be studied using the KIST Europe set. In particular, we’d like to
stress the implications for evaluating and guiding all sorts of theoretical model-
ing approaches based on graphs. Any model that produces a prediction which
can be formulated as an observable defined on a graph can immediately be tested
on the KIST Europe set. This includes time dependent observables. Predictions
that agree with the SMGR data may increase the trust in a given model, while
discrepancies between predictions and data hopefully suggest improvements.
Thus, data contained in the KIST Europe set may be used to drive modeling
efforts and help bridge the gap between theory and experiment.

Finally, we like to stress that the KIST Europe constitutes a flexible basis
to work with since it contains a host of useful data, code and instructions. In
particular, potential users are not limited to working with the graphs that are
presently provided. They are encouraged to start from the raw images and
determine their own specific data selection and graph extraction procedures
tailored to their particular research agenda. They may use the tools provided
by us or deploy entirely different strategies to better suit their needs.

3.2 Materials and methods
In this section we explain all steps involved in furnishing the KIST Europe
dataset in full detail. First, we describe how to setup and execute necessary
wet-lab experiments, including the production of sclerotia [15]. Next, we explain
how to turn the network structures depicted in the raw images into series of
equivalent graphs. Finally, we illustrate how to establish unique node identities
and track them within a given series of graphs.

3.2.1 Obtaining experimental data

For our experiments we cultivate P. polycephalum (HU195xHU200) in a rectan-
gular, 20 cm × 30 cm × 13 cm, translucent plastic dish ontop of a 10 mm layer of
1.25 % agar (Kobe I). To do so we place 1.5 g of dried P. polycephalum sclerotia
crumbs along the short edge of the dish. We make sure to evenly spread them
out such that a continuous and straight line is formed, connecting two adjacent
edges of the dish. In the following we refer to this line as the inoculation line,
see Figure 1b. This concludes the preparation of the dish.

Since P. polycephalum is sensitive to light, we place the dish inside a large
light-proof wooden box of 110 cm x 110 cm 110 cm. Temperature and humidity
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inside were kept constant at 22 ◦C and 55−60 % relative humidity. In our setup
we rely on dried sclerotia, rather than plasmodium, because the former give
exact control over the initial mass of P. polycephalum introduced to the dish.
We make sure to keep the input masses, the properties of the agar layers and
the environment constant to ensure consistent repetition of experiments. For a
detailed description on how to produce dried sclerotia from an initial sample we
refer the reader to the supplementary material.

Inside the box we fix a digital camera (Canon EOS 645D. Lens EFS 18-55
mm) 16 cm above the dish. The camera is oriented perpendicular to the dish
and centered right above it. Each shot captures a large area of 10 cm × 15 cm at
a resolution of 5184×3456 pixel in JPG format. With these settings 1 cm on the
dish corresponds to 370.625 pixels in the image. Since during graph extraction
all lengths and widths measured are stored in units of pixel, this information
can be used to map pixels back to centimeters.

To provide the necessary light for the camera to work inside the dark box we
opt for bright field illumination using a negatoscope, also known as X-ray film
viewer (Planilux, 2 × 15 W, emitting white light). It provides a large area of
low intensity illumination which is uniform in space and time. By putting the
translucent dish ontop of the negatoscope the light that passes trough makes
the structures formed by P. polycephalum visible to the camera overhead. By
design we ensure optimal contrast between the networks and the background and
eliminate all sources of reflections or shadows in the images. This is particularly
desirable as such effects are diminishing the effectiveness of the software used to
do the graph extraction. This concludes the preparation of the box. A schematic
of the complete setup can be seen in Figure 1a.

After the prepared dish is placed in the box, it takes roughly 15 hours for
the organism to make its transition from sclerotia to plasmodium. Once the
plasmodium begins to spread towards the far side of the dish we start capturing
its growth progress by taking an image every 120 seconds using dedicated soft-
ware (Motion detection software; Vulpessoft, DSLR Master). We stop capturing
when the growing front first hits the adjacent wall of the dish. By doing so we
minimize the probability of P. polycephalum moving back towards the inocula-
tion line. We do not feed the organism throughout the entire experiment. This
concludes one iteration of our experiments.

We repeat this experiment under constant conditions and obtain 81 image
series depicting the growth of P. polycephalum and the networks it forms. Since
there is a natural variability in the growth of the organism, we obtain series of
different length and nature. We refer to this data as raw data.

We are aware of a potential caveat of our approach, namely the light source
in the negatoscope emitting the full spectrum of white light. It is well known
that P. polycephalum reacts to specific parts of the spectrum while it is insen-
sitive to others [20]. Thus, ideally one chooses a light source such that the
organism remains undisturbed. However, such a light source was not at our
disposal so we decided to minimize the impact of the light by minimizing the
time P. polycephalum is exposed to it. In particular we couple the triggering of
the camera with the power supply of the negatoscope. Thus we ensure that the

9



slime mold is illuminated a mere 1 second every 120 seconds. Since we did not
observe any irregularities in our experiments known to be induced by light we
conclude that or precautions were sufficient.

3.2.2 Graph extraction

Given the obtained raw data, we discard all series that do not show proper
network formation. Thus the number of usable datasets is reduced to 54. For the
remaining series we seek to describe the characteristic P. polycephalum networks
by equivalent graphs. In addition to capturing the topology of the networks,
we want to obtain a precise measure on the length and width of each vein
observed. Furthermore, we want to establish the positions of the junctions of
the veins in the image. Thus, we want to compute a weighted graph, whose
nodes carry the positions of the junctions in the plane and whose edges carry
weights corresponding to the length and the width of the observed veins.

To compute such a graph representation we rely on a software tool called
NEFI. This tool takes as input an image from the raw dataset depicting a net-
work and returns a faithful representation of this network in form of a weighted
undirected graph. NEFI offers several different algorithms and a variety of set-
tings to do graph extraction. Some experimentation was necessary to find a
sequence of algorithms, a so-called pipeline, such that the returned excellent
graph representations preserve as much information as possible. The pipeline
has been stored and is part of the dataset for reasons of reproducibility. Assert-
ing the effectiveness of a pipeline is convenient and easy, since the tool allows to
visually compare the computed graph with the network in the input image by
drawing the former ontop of the latter. An example can be seen in Figure 1f.
For a more detailed discussion of the reliability of NEFI and how to use it, we
refer to its project page and companion paper [10].

The main caveat of NEFI is that, like any form of image processing or
computer vision, the quality of the output strongly depends on the quality of
the input. To obtain good results with this tool, the input image must be of high
contrast and void of strong color gradients and other detrimental effects [10].
Due to the design of our experiments these requirements are largely satisfied.
However, due to tis implementation NEFI struggles with parts of the image
that do not depict networks. In particular it fails to process regions depicting
the inoculation line and the apical zone. For the network extraction to succeed
these areas must be removed from the images or equivalently a region of interest
must be defined excluding such areas. For consistency we define a specific region
of interest for each given image series of the raw data set. A typical region of
interest is seen in Figure 1e.

To do so, we visually inspected every single image of every sequence in order
to decide on a maximal region of interest containing properly formed networks.
It is common that somewhere within an image sequence P. polycephalum starts
to deviate from "well-behaved" growth, effectively disqualifying the sequence
from this point on. Examples include P. polycephalum suddenly reversing di-
rection or spontaneously spawning new growing tips within an already estab-
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lished network. Thus we make two choices: First, for each sequence of images
we find the longest usable subsequence and second, for each subsequence we de-
cide on one region of interest. We store this information in small configuration
files suitable for subsequent automated graph extraction. We point out that
in general it has been beneficial if the choices of selection are made somewhat
defensively, leading to a reduced likelihood of artifacts occurring in the graph
detection process.

Given the configuration files and the extraction pipeline, NEFI can be used
to batch process sequences automatically. Note that for some series, partially
containing strong color gradients in the background, NEFI failed to properly
segment the input images resulting in unusable graphs. This situation can be
detected easily by inspection of the segmented images or the graph drawings pro-
duced by NEFI. The affected series and the resulting graphs are then excluded
from further processing. While this reduces the number of usable graph series to
36, the remaining graphs capture the topology of the original P. polycephalum
networks exceptionally well.

Note that the raw graphs obtained so far are likely to contain artifacts such
as isolated nodes and dead-ends, see Figure 1f. This is to be expected since
NEFI cannot reliably resolve structures that are very fine grained, e.g. veins in
the network with a width of less than 5 pixel. As a result small structures in
the graph break up into several disconnected parts. In a similar fashion spu-
rious isolated nodes can enter the computed graph. We strongly recommend
anyone considering to work with the raw graphs to carefully inspect them first
in order to assess whether these artifacts need to be removed using filters. In
our experience, a moderate amount of filtering is always appropriate and con-
siderably improves quality of the graphs, i.e. the degree to which they resemble
the original P. polycephalum networks.

To deal with the mentioned artifacts NEFI comes with the possibility to ap-
ply filters capable of removing isolated nodes and dead ends. We have filtered
all raw graphs to obtain the final set of graphs which we store in several file for-
mats. In particular we removed all edges that are not on a cycle, i.e. dead ends
are removed, and kept only the largest connected component. For all but the
finest of veins the filtered graphs capture the structure of the original P. poly-
cephalum networks extremely well. Furthermore they carry precise information
about node positions, edge width and edge lengths. For a detailed description
of how to work with the actual graph files produced by NEFI we refer to its
project page.

Lastly, we point out that the process of graph extraction described here is
geared towards answering a particular set of research questions, see [9]. For a
different set of questions changes may be appropriate and necessary. They can
easily be implemented by starting with the raw graphs and applying different
filters. Also, it is not difficult to go back even further to the original image
sequences and select different regions of interest and different subsequences,
leading to different series of raw graphs. Given NEFI and the possibility to
use configuration files to automate the graph extraction, it becomes possible to
adapt the data in the KIST Europe set to various particular needs.

11

http://nefi.mpi-inf.mpg.de


3.2.3 Node tracking

In this section we illustrate how to compute a node tracking. Our approach is
a variant of a tracking method introduced previously [26, 17]. Here we give a
self-contained account of the tracking technique geared towards non-experts in
optimization. For technical details, proofs and an experimental evaluation of
the method we refer the interested reader to the original publications.

For each of our experiments, let us denote the respective time ordered se-
quence of k filtered graphs with G = G1, G2, . . . , Gt, . . . , Gk and the union of
the respective node sets with V =

⋃k
i=1 Vk. Each node in V can be represented

as a non-negative integer triple (x, y, t). Here x and y denote a node’s pixel
coordinates relating to the input image used for graph extraction and t denotes
its position in the sequence, i.e. in time.

We seek to exploit this information to partition the set V into a collection of
disjoint, time-ordered paths such that every u ∈ V is part of exactly one path.
We call such a path a track and assign an unique identifier to it, e.g. a unique
color, which is shared by all nodes in the track. Intuitively speaking, rather
than thinking of a track as a collection of nodes, one can interpret it as one
physical node observed at different points in time.

Let us define the length of a track by the number of nodes it contains. We
stress that in general a track need not have length k. Tracks may start at any
t = i such that 1 ≤ i ≤ k and end at any t = j such that i ≤ j ≤ k. In particular
tracks of length 1 are possible. Note that any node in a track has at most one
predecessor and at most one successor node.

Let us denote the edges within a track as tracking edges. Tracking edges
may connect nodes of temporal distance larger than 1, i.e. e = (u, v) =
((xu, yu, tu), (xu, yu, tv)), where 1 ≤ tu < tv ≤ k. Such tracks simply "skip"
nodes between the start and the endpoint of the track and correspond to nodes
that have not been observed by NEFI for a given amount of time. Given the con-
tinued changes in the network topology observed during the growth of P. poly-
cephalum such tracks are expected to appear frequently.

Let us elaborate on two effects that impact said topology. First, P. poly-
cephalum networks tend to coarsen as time goes by. Eventually, this process
may cause the thickness of receding veins to slowly drop below the detection
threshold of NEFI. Hence, they disappear from the graphs leading to tracks of
length much shorter than k. Second, periodic changes in the thickness of veins
are observed. It may happen that the thickness of a subset of contracting veins
may drop below the detection threshold of NEFI. As a result, those veins disap-
pear from the graph. However, as the contraction cycle of the vein proceeds its
thickness may yet increase again and eventually exceed the detection threshold
thereby returning to the graph. These periodic changes in the topology of the
graphs naturally lead to tracks that skip a certain number of frames periodically.
Both effects are present at the same time and can be observed in the graphs we
have obtained.

We stress at this point that given our time resolution of 120 seconds, one
must not use the graphs contained in the KIST data set to study the sinusoidal
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Figure 1: Schematic of a graph and its changing topology with respect to time.
At time t = 2 the edge (b, e) and its nodes disappear from the graph because
the thickness of the corresponding vein in P. polycephalum dropped below the
detection threshold of NEFI. The colors indicate tracks Tb and Te for nodes b
and e respectively.

behavior of edge thickness due to peristaltic pumping. The period of pumping
is known to be approximately 100 seconds and can thus not be properly re-
solved [22]. However, changes in topology are on a much slower time scale and
are reliably reflected by the graphs.

We proceed to explain how to compute a node tracking. Let us study the
graph in Figure 1 to gain some insight into the problem. Consider e.g. node
a1. We seek to find a unique track that contains this node, representing its
development in time. A straight-forward suggestion would be a track Ta =
a1, a2, a3. However the track Ta = a1, c2, f3 is just as valid, as is Ta = a3
and so forth. The example illustrates that the number of possible tracks and
therefore the number of disjoint partitions into tracks grows exponentially with
the number of nodes involved.

Ultimately, we seek to find a partition, that faithfully captures the time
development of the nodes in V. To do so we rely on the observation that optimal
tracks are likely to consist of nodes that are close in space as well as close in time.
In the following we formalize this requirement and construct a linear program
(LP) that selects an optimal partition amongst all possible partitions. Once an
LP has been defined, solving it becomes a standard task of optimization and
can be done efficiently using solvers like Gurobi [21] or Cplex [8].

Let us define the optimization problem we want to solve. First, we con-
struct all possible tracking edges using space partition techniques. Assign-
ing a unique identifier to each edge we obtain the set Eid. When the linear
program considers edge for a possible tracking solution it may select edges
using the ids in this set. We define the cost of selecting a particular edge
e = (u, v) = ((xu, yu, tu), (xv, yv, tv)) as

∆E(e) = ε((xu − xv)2 + (yu − yv)2) + τ(tu − tv)2 (1)

Where ε and τ are constants used to control the relative strength of the
squared Euclidean distance in space and time respectively. Note that using this
cost function in our example in Figure 1, track Ta = a1, a2, a3 is favored over
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Ta = a1, c2, f3. Note also that tracks of length 1 have cost 0 since there are no
tracking edges to pay for. As a result the minimum cost solution will consist of
singleton tracks. To circumvent this problem we assign dedicated costs to any
node that is not part of a tracking edge as follows

pV (u) = C (2)

Here it is important that C is selected carefully. It must not be too small
since this will force the formation of artificial singleton tracks even if these
are not part of the ground truth. Too large a value may artificially suppress
singleton tracks which may be part of the ground truth. Going back to Figure 1,
assuming ε = τ = 1, a choice of 1 < C < 22 = 4 will lead to two singleton tracks
for the node b, namely b1 and b3 because a tracking edge connecting b1 and
b3 comes at an edge cost of ∆E(e) = 4. Increasing the node cost such that
C > 22 = 4 changes the picture and results in tracks Tb = b1, b3 and Te = e1, e3.
The example illustrates the importance of the constants involved in the cost
functions.

Note that, we are still facing an exponential number of tracks to consider.
Luckily, we can reduce the size of the set Eid, and thus the size of the LP,
dramatically by combining the effect of the costs functions with additional as-
sumptions that valid for tracking P. polycephalum graphs. In particular, the
cost functions imply that we favor non-singleton tracks with nodes that are
close in time as well as space. As a result, we may discard all options that have
a geographical distance larger than a certain R and a temporal distance larger
than a certain T . Intuitively, when trying to find all possible tracking edges
for a node u, we likely need not consider nodes that are located on the other
side of the graph. Instead we can restrict the search to tracking edges within
a cylinder centered at u with radius R and a height of T . We can exclude all
tracking edges outside such a search cylinder, because their resulting costs are
such that the linear program will never select any of them.

The problem thus boils down to determining suitable values for R and T .
Since the nodes of P. polycephalum are well-separated and do not move within
a time period of 120 seconds, a small radius of R = 30 pixels is justified. We
choose T = 10 which amounts to a time period of 1200 seconds to look for
tracking edges in temporal direction. To tie the cost of singleton tracks to the
physical features of our experiment, we choose C = 2R2 +T 4. Setting ε = 1 and
τ = 10 completes the set of constants involved in the tracking problem. With
these choices we follow the approach in [17].

We convinced ourselves that these settings are suitable for dealing with
P. polycephalum graphs by computing node trackings on artificial test graphs
which enable a comparison with known ground truths. To obtain one such series
we take a real P. polycephalum graph and randomly remove a certain fraction of
nodes from it to obtain graphs at artificial later times. Furthermore we slightly
perturb the coordinates of all the nodes at later times. As expected we find the
error rate to strongly depend on the strength of the geographical perturbation
of nodes. As long as the perturbation is smaller than the minimum distance
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between nodes, the computed tracking is identical to the ground truth. When
nodes start moving more from frame to frame, there is a danger that they ran-
domly move past each other, being confused in their respective tracks. When
the perturbation is set such that a node can only move within a radius of R = 30,
less than 4% of the nodes end up in wrong tracks given the settings illustrated
above. However, we expect that this error is somewhat pessimistic because
nodes in real P. polycephalum do not move much compared to our artificial test
graphs. Careful visual inspection of the obtained node trackings resulting from
real P. polycephalum data supports this conjecture.

From the arguments in the previous section it also follows that filtering has
a strong impact on the quality of the node tracking. If graphs are filtered
such that nodes are well-separated, excellent results can be expected. Thus,
we recommend to carefully apply filters if any research questions based on the
node tracking are to be tackled. In particular, contracting nodes of degree 2 is
strongly advised if possible.

Finally, by combining the considerations discussed above, we are in a position
to define the actual linear program computing a node tracking:

minimize : f =
∑

e∈Eid

∆E(e)xe+
∑
i∈Vid

pV (i)yi +
∑
j∈Vid

pV (j)zj

s.t. : ∀ e : xe ∈ {0, 1} ∀ i : yi ∈ {0, 1} ∀ j : zj ∈ {0, 1}
e ∈ Eid i ∈ Vid j ∈ Vid

∀ e : xe ≥ 0 ∀ i : yi ≥ 0 ∀ j : zj ≥ 0

∀ i : yi = 1−
∑

m=(n,i)∈Eid

xm ∀ j : zj = 1−
∑

m=(j,n)∈Eid

zm

Note the last two constraints including sums over tracking edges that leave/enter
a node. They make sure that for each node the LP either pays the cost of cov-
ering it with a tracking edge or the penalty for forming a singleton track but
never both. For a more technical exposition of this optimization problem we
refer the reader to [17].

The values of the LP variables xe are then determined by the optimal solution
of the LP and indicate which tracking edges have been selected. Partitioning
the selection into disjoint paths yields the desired node tracking. We assign
each track a color and propagate this color to each node in the track, i.e. across
all graphs in a given series. The color information is part of the graphs of
all our datasets and thus readily available for further processing. A program
constructing and solving this LP using Cplex [8] is provided as part of the data
set.
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4 Discussion
The first and most important step in sharing your data is to share your data [25].
To this end, we introduce the Slime Mold Graph Repository, a novel platform
that facilitates the exchange of experimental data revolving around networks
formed by slime molds. We believe that by encouraging the reuse of data, the
value and visibility of experimental ground work is significantly increased. Not
only, does the reproduction of results based on publicly available data become
much easier, shared data may be put to unforeseen use by researchers from
different fields willing to examine it from a new point of view.

We would like the research community to interpret the SMGR as a twofold
challenge. First, we challenge people working on slime molds to contribute
their own valuable data thereby increasing the visibility and impact of their
experimental work. Second, we challenge everyone to look at the contents of
the SMGR and try to come up with new ways to challenge and enrich our
understanding of the interesting organisms that are slime molds.
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